Efficient Probabilistic Inference with Partial Ranking Queries
نویسندگان
چکیده
Distributions over rankings are used to model data in various settings such as preference analysis and political elections. The factorial size of the space of rankings, however, typically forces one to make structural assumptions, such as smoothness, sparsity, or probabilistic independence about these underlying distributions. We approach the modeling problem from the computational principle that one should make structural assumptions which allow for e cient calculation of typical probabilistic queries. For ranking models, typical queries predominantly take the form of partial ranking queries (e.g., given a user's top-k favorite movies, what are his preferences over remaining movies?). In this paper, we argue that ri ed independence factorizations proposed in recent literature [7, 8] are a natural structural assumption for ranking distributions, allowing for particularly efcient processing of partial ranking queries.
منابع مشابه
E cient Probabilistic Inference with Partial Ranking Queries
Distributions over rankings are used to model data in various settings such as preference analysis and political elections. The factorial size of the space of rankings, however, typically forces one to make structural assumptions, such as smoothness, sparsity, or probabilistic independence about these underlying distributions. We approach the modeling problem from the computational principle th...
متن کاملRiffled Independence for Efficient Inference with Partial Rankings
Distributions over rankings are used to model data in a multitude of real world settings such as preference analysis and political elections. Modeling such distributions presents several computational challenges, however, due to the factorial size of the set of rankings over an item set. Some of these challenges are quite familiar to the artificial intelligence community, such as how to compact...
متن کاملPrivacy-Preserving Text Indexing for Search of Documents
Protection of content of sensitive text documents is important in enterprise intranets. An index structure is needed to support efficient search and retrieval, but it can lead to information leakage; by statistical attacks an adversary can draw probabilistic inference about the contents of document collection. Zerr and others present a confidential index structure and the ranking of retrieved d...
متن کاملTop-k best probability queries and semantics ranking properties on probabilistic databases
There has been much interest in answering top-k queries on probabilistic data in various applications such as market analysis, personalised services, and decision making. In probabilistic relational databases, the most common problem in answering top-k queries (ranking queries) is selecting the top-k result based on scores and top-k probabilities. In this paper, we firstly propose novel answers...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کامل